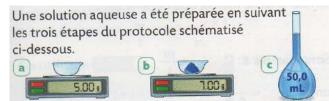
Révisions Chimie

Exercice 1

Pour déterminer la densité du dichlorométhane, on pèse une fiole jaugée de volume V = 50,0 mL remplie de ce liquide. On trouve une masse m = 128,7 g. La masse de la fiole vide est $m_0 = 61,5$ g.

- 1. Déterminer la masse volumique de ce liquide et l'exprimer en g·mL⁻¹.
- 2. En déduire la densité du dichlorométhane.


Exercice 2

On souhaite prélever un volume V = 100 mL d'éther diéthylique dont un extrait d'étiquette est reproduit ci-après.

- 1. Calculer la masse de liquide à peser.
- 2. Préciser les mesures de sécurité à respecter pour manipuler sans danger cette espèce.

Exercice 3

- 1. Écrire la relation donnant la concentration en masse t d'une espèce chimique dissoute en solution. Indiquer les unités de chaque grandeur.
- 2. Calculer la concentration en masse t en soluté de la solution préparée.

Exercice 4

Une solution aqueuse de permanganate de potassium a une concentration en masse $t = 0.50 \text{ g} \cdot \text{L}^{-1}$. On souhaite en préparer un volume V_{solution} = 0,200 L.

- 1. Écrire la relation permettant de calculer la masse m de permanganate de potassium à peser pour préparer cette solution. Indiquer les unités de chaque grandeur.
- 2. Déterminer la valeur m de la masse à peser.

Exercice 5

À partir d'une solution mère de concentration en masse en diiode $t_m = 0.25 \,\mathrm{g} \cdot \mathrm{L}^{-1}$, on souhaite préparer un volume $V_f = 0,200$ L de solution fille de concentration en masse en diiode $t_f = 0,10 \text{ g} \cdot \text{L}^{-1}$.

Calculer le volume V_m de solution mère à prélever.

Exercice 6

compléter le tableau ci-dessous :

Symbole de l'élément	C	N	Cℓ	Fe
Nombre de protons	6	7		26
Nombre de neutrons		8	18	
Écriture conventionnelle du noyau	14C	da?}	Cℓ	⁵⁶ Fe

Exercice 7

Un atome d'or est composé de 79 protons, 121 neutrons et 79 électrons.

Calculer la masse approchée de cet atome.

• $m_{\text{nucl\'eon}} = 1,67 \times 10^{-27} \text{ kg}$

Exercice 8

Un atome de magnésium Mg a un numéro atomique Z=12, et un nombre de masse A=24. Il forme un cation en perdant deux électrons.

- 1. Écrire la formule de l'ion magnésium.
- 2. Déterminer le nombre de protons et d'électrons de cet ion.

Exercice 9

Les configurations électroniques à l'état fondamental de trois atomes sont données ci-dessous :

- a Oxygène: 1s² 2s² 2p⁴
- b Néon: 1s2 2s2 2p6
- Phosphore: 1s² 2s² 2p⁶ 3s² 3p³
- 1. Définir ce qu'est un électron de valence.
- 2. Dénombrer les électrons de valence de chaque atome.

Exercice 10

 Identifier les atomes stables parmi ceux dont les configurations électroniques sont données ci-dessous. Justifier.

- a He: 1s2
- b Li: 1s2 2s1
- F: 1s² 2s² 2p⁵
- d Ne: 1s2 2s2 2p6
- e Mg: 1s² 2s² 2p⁶ 3s²
- f Na: 1s2 2s2 2p6 3s1

Exercice 11

L'élément aluminium est situé dans la 13^e colonne du tableau périodique et l'élément oxygène dans la 16^e.

• Déterminer les formules chimiques des ions monoatomiques stables que forment les atomes d'aluminium et d'oxygène.

Exercice 12

L'acide hypochloreux est utilisé en tant qu'agent nettoyant de la peau. Le schéma de Lewis de sa molécule est :

$$H-\overline{O}-\overline{C\ell}$$

Justifier ce schéma de Lewis.

Exercice 13

Un comprimé contient une quantité de matière $n = 6.6 \times 10^{-3}$ mol de paracétamol.

• Exprimer puis calculer le nombre de molécules *N* de paracétamol contenues dans un comprimé.

Donnée

• Constante d'Avogadro : $N_A = 6,02 \times 10^{23} \text{ mol}^{-1}$.

Exercice 14

 L'équation écrite ci-dessous est-elle celle d'un changement d'état d'une espèce chimique ? Justifier.

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(\ell)$$

Exercice 15

L'huile d'olive, essentiellement composée d'acide oléique $C_{18}H_{34}O_2$, se fige lorsqu'elle est placée au réfrigérateur.

• Écrire l'équation de cette transformation.

Exercice 16

La température d'ébullition de l'ammoniac NH_3 est égale à -33.3 °C à la pression de 1 013 hPa.

- 1. Lorsque de l'ammoniac se vaporise, reçoit-il ou libèret-il de l'énergie ?
- 2. Calculer l'énergie Q transférée lors de la vaporisation de 2,5 kg d'ammoniac.

Donnée

Énergie massique de vaporisation de l'ammoniac : $L_v(NH_3) = 1,37 \times 10^3 \text{ kJ} \cdot \text{kg}^{-1}$.

Exercice 17

Recopier et ajuster, avec des nombres stœchiométriques corrects, les équations des réactions chimiques suivantes :

a. ... MgO (s) + ... Si
$$(\ell) \rightarrow$$
 ... Mg (s) + ... SiO₂ (ℓ)

c. ...
$$Pb^{2+}(aq) + ... I^{-}(aq) \rightarrow ... PbI_{2}(s)$$

d. ...
$$Zn(s) + ... H^{+}(aq) \rightarrow ... Zn^{2+}(aq) + ... H_{2}(g)$$